Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309602

RESUMO

Endogenous partial denitrification (EPD) has drawn a lot of interest due to its abundant nitrite (NO2--N) accumulation capacity. However, the poor phosphate (PO43--P) removal rate of EPD restricts its promotion and application. In this study, the potentiality of various nano zero-valent iron (nZVI) concentrations (0, 20, 40, and 80 mg/L) on NO2--N accumulation and PO43--P removal in EPD systems had been investigated. Results showed that nZVI improved NO2--N accumulation and PO43--P removal, with the greatest nitrate-to-nitrite transformation ratio (NTR) and PO43--P removal rate of 97.74 % and 64.76 % respectively at the optimum nZVI level (80 mg/L). Microbial community analysis also proved that nZVI had a remarkable influence on the microbial community of EPD. Candidatus_Competibacter was contribute to NO2--N accumulation which was enriched from 24.74 % to 40.02 %. The enrichment of Thauera, Rhodobacteraceae, Pseudomonas were contributed to PO43--P removal. The chemistry of nZVI not only compensated for the deficiency of biological PO43--P removal, but also enhanced NO2--N enrichment. Therefore, nZVI had the huge potentiality to improve the operational performance of the EPD system.


Assuntos
Nitratos , Nitritos , Fósforo , Ferro , Desnitrificação , Dióxido de Nitrogênio , Nitrogênio , Esgotos , Reatores Biológicos
2.
Plant Cell Environ ; 47(4): 1023-1040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984059

RESUMO

Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Resistência à Seca , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Ubiquitina/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
3.
Transplantation ; 108(3): e36-e48, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126420

RESUMO

BACKGROUND: Although heart transplantation is the definitive treatment for heart failure in eligible patients, both acute and chronic transplant rejection frequently occur. Protein phosphatase 2A (PP2A) activity is critical in maintaining tissue and organ homeostasis. In this study, we evaluated the effect of a novel class of small molecule activators of PP2A (SMAPs) on allograft rejection in a mouse heterotopic heart transplantation model. METHODS: Recipient mice were administered with DT-061 (a pharmaceutically optimized SMAP) or vehicle by oral gavage beginning 1 d after transplantation. Histological and immunofluorescence analyses were performed to examine allograft rejection. Regulatory T cells (Treg) from recipient spleens were subjected to flow cytometry and RNA sequencing analysis. Finally, the effect of DT-061 on smooth muscle cells (SMCs) migration and proliferation was assessed. RESULTS: DT-061 treatment prolonged cardiac allograft survival. SMAPs effectively suppressed the inflammatory immune response while increasing Treg population in the allografts, findings corroborated by functional analysis of RNA sequencing data derived from Treg of treated splenic tissues. Importantly, SMAPs extended immunosuppressive agent cytotoxic T lymphocyte-associated antigen-4-Ig-induced cardiac transplantation tolerance and allograft survival. SMAPs also strongly mitigated cardiac allograft vasculopathy as evidenced by a marked reduction of neointimal hyperplasia and SMC proliferation. Finally, our in vitro studies implicate suppression of MEK/ERK pathways as a unifying mechanism for the effect of PP2A modulation in Treg and SMCs. CONCLUSIONS: PP2A activation prevents cardiac rejection and prolongs allograft survival in a murine model. Our findings highlight the potential of PP2A activation in improving alloengraftment in heart transplantation.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Humanos , Camundongos , Animais , Proteína Fosfatase 2/farmacologia , Sobrevivência de Enxerto , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Coração/efeitos adversos
4.
BMC Plant Biol ; 23(1): 481, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814209

RESUMO

BACKGROUND: Phenylalanine ammonia-lyase (PAL), as a key enzyme in the phenylalanine metabolism pathway in plants, plays an important role in the response to environmental stress. However, the PAL family responding to abiotic stress has not been fully characterized in rapeseed. RESULTS: In this study, we conducted a genome-wide study of PAL family, and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements and response to stress treatment. A total of 17 PALs were identified in the rapeseed genome. Based on phylogenetic analysis, the BnPALs were divided into four clades (I, II, IV, and V). The prediction of protein structure domain presented that all BnPAL members contained a conservative PAL domain. Promoter sequence analysis showed that the BnPALs contain many cis-acting elements related to hormone and stress responses, indicating that BnPALs are widely involved in various biological regulatory processes. The expression profile showed that the BnPALs were significantly induced under different stress treatments (NaCl, Na2CO3, AlCl3, and PEG), suggesting that BnPAL family played an important role in response to abiotic stress. CONCLUSIONS: Taken together, our research results comprehensively characterized the BnPAL family, and provided a valuable reference for revealing the role of BnPALs in the regulation of abiotic stress responses in rapeseed.


Assuntos
Brassica napus , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Sequência de Aminoácidos , Filogenia , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/metabolismo
5.
J Cell Commun Signal ; 17(4): 1219-1227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37378812

RESUMO

The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.

6.
Phys Rev Lett ; 130(9): 095101, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930918

RESUMO

We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.

7.
Cell Commun Signal ; 21(1): 14, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670446

RESUMO

BACKGROUND: Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS: Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS: Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION: Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.


Assuntos
Estenose da Valva Aórtica , Calcinose , Masculino , Feminino , Humanos , Camundongos , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Meios de Cultivo Condicionados , Calcinose/metabolismo , Calcinose/patologia , Células Cultivadas
8.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625347

RESUMO

Vascular smooth muscle cell (SMC) phenotypic switching is widely recognized as a key mechanism responsible for the pathogenesis of several aortic diseases, such as aortic aneurysm. Cellular communication network factor 2 (CCN2), often upregulated in human pathologies and animal disease models, exerts myriad context-dependent biological functions. However, current understanding of the role of SMC-CCN2 in SMC phenotypic switching and its function in the pathology of abdominal aortic aneurysm (AAA) is lacking. Here, we show that SMC-restricted CCN2 deficiency causes AAA in the infrarenal aorta of angiotensin II-infused (Ang II-infused) hypercholesterolemic mice at a similar anatomic location to human AAA. Notably, the resistance of naive C57BL/6 WT mice to Ang II-induced AAA formation is lost upon silencing of CCN2 in SMC. Furthermore, the pro-AAA phenotype of SMC-CCN2-KO mice is recapitulated in a different model that involves the application of elastase-ß-aminopropionitrile. Mechanistically, our findings reveal that CCN2 intersects with TGF-ß signaling and regulates SMC marker expression. Deficiency of CCN2 triggers SMC reprograming associated with alterations in Krüppel-like factor 4 and contractile marker expression, and this reprograming likely contributes to the development of AAA in mice. These results identify SMC-CCN2 as potentially a novel regulator of SMC phenotypic switching and AA biology.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Humanos , Camundongos , Animais , Músculo Liso Vascular/patologia , Reprogramação Celular , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Plant Physiol ; 191(1): 352-368, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179100

RESUMO

The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Melhoramento Vegetal , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
10.
Front Plant Sci ; 13: 1056206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438142

RESUMO

There are three main challenges to improving sclerotinia stem rot (SSR) resistance in rapeseed (Brassica napus L.). First, breeding materials such as the backbone parents have not been extensively investigated, making the findings of previous studies difficult to directly implement. Second, SSR resistance and flowering time (FT) loci are typically linked; thus, use of these loci requires sacrifice of the rapeseed growth period. Third, the SSR resistance loci in susceptible materials are often neglected, thereby reducing the richness of resistant resources. This study was conducted to investigate the stem resistance, disease index, and FT of a doubled haploid population consisting of 151 lines constructed from the backbone parent 19514A and conventional rapeseed cultivar ZY50 within multiple environments. Quantitative trait locus (QTL) mapping revealed 13 stem resistance QTLs, 9 disease index QTLs, and 20 FT QTLs. QTL meta-analysis showed that uqA04, uqC03.1, and uqC03.2 were repeatable SSR resistance QTLs derived from different parents but not affected by the FT. Based on these three QTLs, we proposed a strategy for improving the SSR resistance of 19514A and ZY50. This study improves the understanding of the resistance to rapeseed SSR and genetic basis of FT and demonstrates that SSR resistance QTLs can be mined from parents with a minimal resistance level difference, thereby supporting the application of backbone parents in related research and resistance improvement.

11.
Sci Rep ; 12(1): 19264, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357487

RESUMO

The L-shell x-ray emissions of gold are investigated for the bombardment of high energy C6+ ions in the high energy region of 154.3-423.9 MeV/u. Due to the multiple ionization of outer-shell electrons at the movement of L x-ray emission, the blue shift of the experimental x-ray energy and an enhancement of the relative intensity ratios of Lι, Lß-Lα x rays are observed. Using the improved thin target formula and considering the effect of multiple ionization on atomic parameters, the L-subshell x-ray production cross sections are extracted from the counts and compared with the theoretical estimations of BEA, PWBA and ECPSSR. It is found that the relative corrections of ECPSSR on PWBA can be ignored in the present experimental energy region. The calculations of PWBA and ECPSSR are almost identical and both are larger than the experimental results. The BEA is in better agreement with the experiment as a whole.

12.
Sci Rep ; 12(1): 6253, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428756

RESUMO

The L-shell X-ray emissions of iodine are investigated as a function of the incident energy for I22+ ions impacting on Fe target in the energy region near the Bohr velocity. Six distinct L-subshell X-rays, Lι, Lα1, 2, Lß1, 3, 4, Lß2, 15, Lγ1 and Lγ2, 3, 4, 4', are observed. Compared to the atomic data, the energy of the experimental X ray shifts to the higher energy side. The relative intensity ratios of Lι, Lß1, 3, 4, Lß2, 15, to Lα1, 2, Lι to Lß2, 15 and Lγ2, 3, 4, 4/ to Lγ1 are enhanced, but has no obvious change with the increase of projectile energy in the present energy region. That is interpreted by the multiple ionization effect of the M-, N- and O-shell electrons.

13.
J Exp Bot ; 73(1): 154-167, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34486674

RESUMO

Siliques are a major carbohydrate source of energy for later seed development in rapeseed (Brassica napus). Thus, silique length has received great attention from breeders. We previously detected a novel quantitative trait locus cqSL-C7 that controls silique length in B. napus. Here, we further validated the cqSL-C7 locus and isolated its causal gene (BnaC7.ROT3) by map-based cloning. In 'Zhongshuang11' (parent line with long siliques), BnaC7.ROT3 encodes the potential cytochrome P450 monooxygenase CYP90C1, whereas in 'G120' (parent line with short siliques), a single nucleotide deletion in the fifth exon of BnaC7.ROT3 results in a loss-of-function truncated protein. Sub-cellular localization and expression pattern analysis revealed that BnaC7.ROT3 is a membrane-localized protein mainly expressed in leaves, flowers and siliques. Cytological observations showed that the cells in silique walls of BnaC7.ROT3-transformed positive plants were longer than those of transgene-negative plants in the background of 'G120', suggesting that BnaC7.ROT3 affects cell elongation. Haplotype analysis demonstrated that most alleles of BnaC7.ROT3 are favorable in B. napus germplasms, and its homologs may also be involved in silique length regulation. Our findings provide novel insights into the regulatory mechanisms of natural silique length variations and valuable genetic resources for the improvement of silique length in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Sementes
14.
Clin Sci (Lond) ; 135(17): 2085-2097, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402501

RESUMO

Although extremely important, the molecular mechanisms that govern aortic aneurysm (AA) formation and progression are still poorly understood. This deficit represents a critical roadblock toward the development of effective pharmaceutical therapies for the treatment of AA. While dysregulation of protein phosphatase 2A (PP2A) is thought to play a role in cardiovascular disease, its role in aortic aneurysm is unknown. The objective of the present study is to test the hypothesis that PP2A regulates abdominal aortic aneurysm (AAA) progression in a murine model. In an angiotensin II-induced AAA murine model, the PP2A inhibitor, LB-100, markedly accelerated AAA progression as demonstrated by increased abdominal aortic dilation and mortality. AAA progression was associated with elevated inflammation and extracellular matrix fragmentation, concomitant with increases in both metalloproteinase activity and reactive oxygen species production. Conversely, administration of a novel class of small molecule activators of PP2A (SMAPs) resulted in an antithetical effect. SMAPs effectively reduced AAA incidence along with the corresponding pathologies that were increased with LB-100 treatment. Mechanistically, modulation of PP2A activities in vivo functioned in part via alteration of the ERK1/2 and NFκB signaling pathways, known regulators of AAA progression. These studies, for the first time, demonstrate a role of PP2A in AAA etiology and demonstrate that PP2A activation may represent a novel strategy for the treatment of abdominal aortic aneurysms.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Ativadores de Enzimas/farmacologia , Proteína Fosfatase 2/metabolismo , Remodelação Vascular/efeitos dos fármacos , Regulação Alostérica , Angiotensina II , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Dilatação Patológica , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Células RAW 264.7
15.
Front Cardiovasc Med ; 8: 745009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118139

RESUMO

Protein phosphatase 2A (PP2A), a crucial serine/threonine phosphatase, has recently been reported to play an important role in cardiovascular disease. Previous studies have hinted that PP2A is involved in atherosclerosis formation, but the associated mechanisms remain poorly understood. In this study, we investigate the role of PP2A in the pathogenesis of atherosclerosis. In human atherosclerotic coronary arteries, we found that the expression and activity of PP2A decreased significantly when compared to non-atherosclerotic arteries. Additional experiments demonstrated that pharmacological inhibition of PP2A aggravated atherosclerosis of ApoE-/- mice. Considering the central role of macrophages in atherosclerosis, mice with conditional knockout of the PP2A-Cα subunit in myeloid cells were produced to investigate the function of PP2A in macrophages. Results showed that PP2A deficiency in myeloid cells aggravated atherosclerotic lesions in mice. in vitro experiments indicated that PP2A-deficient macrophages had an enhanced ability of lipid uptake and foam cell formation. Mechanistically, the deficiency of the PP2A in macrophages led to an increase in the phosphorylation level of p38, which contributed to the elevated expression of scavenger receptor CD36, a key factor involved in lipoprotein uptake. Our data suggest that PP2A participates in the pathophysiological process of atherosclerosis. The decrease of PP2A expression and activity in macrophages is a crucial determinant for foam cell formation and the initiation of atherosclerosis. Our study may provide a potential novel approach for the treatment of atherosclerosis.

16.
Nat Commun ; 11(1): 5157, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057005

RESUMO

Intense particle beams generated from the interaction of ultrahigh intensity lasers with sample foils provide options in radiography, high-yield neutron sources, high-energy-density-matter generation, and ion fast ignition. An accurate understanding of beam transportation behavior in dense matter is crucial for all these applications. Here we report the experimental evidence on one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter, in comparison with the current-widely used models describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations, we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m that can be created by the beam-driven return current. This collective effect plays the dominant role in the stopping of laser-accelerated intense proton beams in dense ionized matter. This finding is essential for the optimum design of ion driven fast ignition and inertial confinement fusion.

17.
Biomed Pharmacother ; 125: 109985, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066043

RESUMO

Calcific aortic valve disease (CAVD) is caused by valve interstitial cells (VICs) initiating the thickening and calcification of valve leaflets. The present study aimed to investigate whether andrographolide (AGP) could attenuate the calcification of human valve interstitial cells (hVICs). hVICs stimulated by osteoblastic medium (OM) were treated with or without AGP. RNA sequencing was utilized to investigate changes in gene expression. Cell growth and calcification of hVICs were assessed using a CCK8 assay and Alizarin Red S staining, respectively. The expression of the two calcification-related markers, RUNX2 and ALP, were quantified by qRT-PCR, Western blotting, and immunofluorescent staining. The results indicate that hVICs treated with OM plus AGP exhibited decreased Alizarin Red S staining compared with cells treated with OM only in addition to down-regulation of ALP and RUNX2. Mappings of differentially expressed genes (DEGs) in different groups using Venn diagrams during analysis of gene expression profiles, 653 common DEGs were identified that displayed different biological functions and signaling pathways after treatment with AGP. RELA, a core factor of the NF-κB pathway was inhibited by AGP in addition to phosphorylation of AKT and ERK1/2. Thus, AGP attenuated calcification of hVICs. These results demonstrate that AGP, a promising natural product, can attenuate the process of CAVD.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Produtos Biológicos/farmacologia , Calcinose/metabolismo , Diterpenos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/patologia , Produtos Biológicos/química , Calcinose/etiologia , Calcinose/patologia , Diferenciação Celular/efeitos dos fármacos , Biologia Computacional/métodos , Suscetibilidade a Doenças , Diterpenos/química , Perfilação da Expressão Gênica , Humanos , Osteogênese/efeitos dos fármacos , RNA Mensageiro/genética
18.
Theor Appl Genet ; 133(2): 479-490, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832742

RESUMO

KEY MESSAGE: QTL mapping and candidate gene analysis indicate that allelic variations in BnaC2.MYB28 resulted from homeologous exchange and determine difference in seed glucosinolate content. A low seed glucosinolate content has long been an important breeding objective in rapeseed improvement. However, the molecular mechanisms underlying seed GSL content variations remain to be elucidated in allotetraploid Brassica napus. Here, we developed a double haploid population from a cross between two B. napus accessions that possess relatively low, but significantly different seed GSL contents and identified a major QTL, qGSL-C2, on chromosome C02 that explains 30.88-72.87% of the phenotypic variation observed in five environments. Using near-isogenic lines, we further delimited qGSL-C2 to a physical region of 49 kb on the B. rapa chromosome A02 which is highly homologous to the target C02 interval. Among five candidate genes, BnaC2.MYB28, a homologue of the Arabidopsis MYB28 encoding a putative R2R3-MYB-type transcription factor functioning in aliphatic methionine-derived GSL synthesis, was most likely to be the target gene underlying the QTL. Sequence analysis revealed multiple insertion/deletion and SNP variations in the genomic region between the alleles of the NILs. Furthermore, the allelic variations in BnaC2.MYB28 in the natural B. napus population were significantly associated with seed GSL content. Remarkably, the phylogenetic analysis and sequence comparison suggested that while the BnaC2.MYB28 allele from the parental line G120 was inherited from B. oleracea BolC2.MYB28, its counterpart from the other parent, 9172, most likely evolved from B. rapa BraA2.MYB28 via possible homeologous exchange. Our study promotes greater understanding of the molecular regulation of seed GSL content and provides useful molecular markers for seed GSL improvement in B. napus.


Assuntos
Brassica napus/genética , Glucosinolatos/metabolismo , Locos de Características Quantitativas , Sementes/genética , Fatores de Transcrição/genética , Alelos , Proteínas de Arabidopsis/genética , Brassica napus/metabolismo , Brassica rapa/genética , Mapeamento Cromossômico , Evolução Molecular , Estudos de Associação Genética , Glucosinolatos/genética , Haploidia , Histona Acetiltransferases/genética , Fenótipo , Filogenia , Melhoramento Vegetal , Sementes/metabolismo , Fatores de Transcrição/metabolismo
19.
Sci Rep ; 9(1): 5359, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926834

RESUMO

In order to clarify the mechanism and the influence of the initial charge state and target atomic parameters for the formation of L-shell multiple ionization state of Arq+ ions produced by the collisions near the Bohr velocity, the k-shell x-ray emission of Ar is measured for 1.2 MeV Arq+(q=4, 6, 8, 9, 11, 12) ions impacting on V target and 3 MeV Ar11+ ions interacting with selected targets (Z2 = 23, 26, 27, 28, 29, 30). It is found that the measured Ar Kα and Kß x-ray energies shift to the high energy side, and the relative intensity ratios of Kß/Kα are enlarged than the atomic data, owing to the presence of out-shell multiple vacancies. The multiple ionization is almost independence of the projectile charge state, but is diminished with increasing target atomic number.

20.
Rev Sci Instrum ; 89(2): 023101, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495865

RESUMO

Conventional fiber-optic displacement interferometers operated at 1550 nm suffer from low temporal or velocity resolution for lower velocity measurements. To overcome this drawback, a fiber-optic Doppler pin system operated at 532 nm is developed, and its capability is demonstrated with low-velocity plate impact experiments. The new instrument would be an important supplemental to the existed systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA